Septic B-spline collocation method for numerical solution of the coupled Burgers’ equations
نویسندگان
چکیده
منابع مشابه
Non-polynomial Spline Method for Solving Coupled Burgers Equations
In this paper, non-polynomial spline method for solving Coupled Burgers Equations are presented. We take a new spline function. The stability analysis using Von-Neumann technique shows the scheme is unconditionally stable. To test accuracy the error norms 2L, L are computed and give two examples to illustrate the sufficiency of the method for solving such nonlinear partial differential equation...
متن کاملCubic B-spline Collocation Method for Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation
In this paper, numerical solutions of the nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by a method based on collocation of cubic B-splines. Applying the Von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The L∞ and L2 ...
متن کاملSeptic B-Spline Collocation Method for Numerical Solution of the Kuramoto-Sivashinsky Equation
In this paper the Kuramoto-Sivashinsky equation is solved numerically by collocation method. The solution is approximated as a linear combination of septic B-spline functions. Applying the Von-Neumann stability analysis technique, we show that the method is unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions....
متن کاملnon-polynomial spline method for solving coupled burgers’ equations
in this paper, non-polynomial spline method for solving coupled burgers’ equations are presented. we take a new spline function. the stability analysis using von-neumann technique shows the scheme is unconditionally stable. to test accuracy the error norms2l, ∞l are computed and give two examples to illustrate the sufficiency of the method for solving such nonlinear partial differential equatio...
متن کاملNumerical Solution of Hirota-Satsuma Coupled MKdV Equation with Quantic B-Spline Collocation Method
Collocation method using quintic B-splines finite element have been developed for solving numerically the HirotaSatsuma coupled MKdV equation. Accuracy of the proposed method is shown numerically by calculating conservation laws, 2 L and L norms on studying of a soliton solution. It is shown that the collocation scheme for solutions of the MKdV equation gives rise to smaller errors and is qui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arab Journal of Basic and Applied Sciences
سال: 2019
ISSN: 2576-5299
DOI: 10.1080/25765299.2019.1628687